The Use of Carbonated Cement Kiln Dust as a Soil Stabilization Amendment

Team K.V.S.C

Abdullah Alqattan Mohammad Alhulaila Mohammad Altarkait Tung Do

April 28, 2017

Project Descriptions

- To determine the effectiveness of Carbonated Cement Kiln Dust (CCKD) for use as a soil stabilization amendment
- Previous study on lime, Class C Fly Ash and CKD shows that CKD can be used as soil stabilization amendment
- Cement production accounts for approximately 5% of all human produced CO₂, and CKD is currently treated as waste by cement manufacturers

Client & Stakeholders

Client: Alarick Reiboldt, Civil and Environmental Engineering Instructor

• The study on the uses of CCKD

Stakeholders:

- Cement Manufacturing Companies
 - The use of CCKD, reducing CKD waste
- Construction Companies
 - The use of CCKD as a soil stabilizer
- Global Community
 - The reduction of CO₂ in the atmosphere

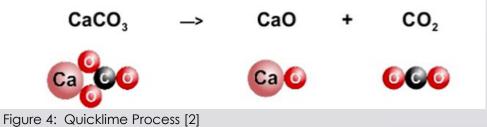

Figure 2: The Client, professor Alarick Reiboldt [2]

Figure 3: Cement Manufacturing Company [3]

CKD & CCKD Chemical Components

- Reacting CKD with Carbon Dioxide (CO₂) to get CCKD is a critical solution
- The main component of CKD is Calcium Oxide (CaO) (64.72%)
- Calcium Carbonate (CaCO₃) is the result of reverse quicklime process (Figure 4 shows quicklime process)
- CCKD consists of mainly CaCO₃, which can be used as a soil stabilizer calcium carbonate —> calcium oxide + carbon dioxide

Scope of Work

Task 1: Literature Review

Task 2: Soil Classification

- Sieve Analysis (ASTM D421)
- Atterberg Limit Tests (ASTM D4318-10e1)
- Task 3: Preparing Soil Samples
- Task 4: Soil Strength Tests
 - Direct Shear Test (ASTM D3080)
 - Triaxial Shear Test (UU ASTM D2850-03a)

Task 5: Analysis Results

Task 6: Project Management

- Scheduling
- Meetings
- Deliverables

Figure 5: Triaxial Shear Machine

Exclusions

- Tasks that are not listed under Scope of Work section are excluded from the project
- Additional Laboratory Testings will only be considered if deem necessary and

approved by the client

Figure 6: Direct Shear Machine

Literature Review

Review previous study on lime, Class C Fly Ash and CKD

by Dr. Solanki (University of Oklahoma in Norman, Oklahoma)

- CKD mixed 5%, 10% and 15% by weight
- 7-day curing periods for samples
- Soils used in previous study (USCS Classification): CL-ML Sandy Silty Clay

Soil Selection

Looking for soils that are rich of silt materials

(with the help of Geology Faculty)

- Sieve Analysis (ASTM D421)
- Atterberg Limit Tests (ASTM D4318-10e1)
- Soil Classification (USCS Classification)

Figure 7: Soil Obtained Site [4]

Atterberg Limits

For Soil Samples retained on, and passing through sieve #200:

- Liquid Limit: 29.41% ± 1.488%
- Plasticity Index: 5.186%

Table 3: Liquid Limit

Sample #	Liquid Limit (LL)		
LL1	28.71		
LL2	29.13		
LL3	31.88		
LL4	27.93		
Average Liquid Limit	29.41		
Standard Deviation	1.488		

Table 4: Plastic Limit

Sample #	Plastic Limit (PL)
PL1	24.59
PL2	23.90
PL3	26.32
PL4	23.31
PL5	23.93
PL6	24.19
PL7	23.64
PL8	23.95
Average Plastic Limit	24.23
Standard Deviation	0.8633

Soil Classification

Original Soils (USCS Classification): **SM Silty Sand** Engineered Soil Samples:

- Keeping soils retained on, and passing through sieve #200
- % Sand: ~ 38%
- % Fines: ~ 62%
- LL: ~ 29.4%
- PI: ~ 5.2%
- Over 30 kg obtained

Engineered Soil Sample (USCS Classification): CL-ML Sandy Silty Clay

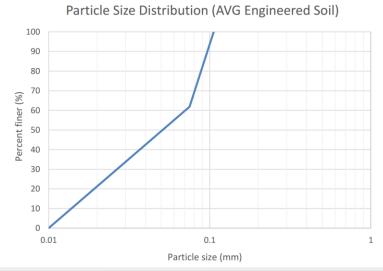


Figure 9: Engineered Soil's Average PSD Graph

Table 1: Engineered Soil's Avg % Finer

Sieve #	Average Percent Finer (%)
140	100.0
200	61.85
Pan	0

Preparing Soil Mixtures

Obtained Lime, CKD and CCKD

- Lime (3 Mixes 3 samples each)
- CKD (3 Mixes 3 samples each)
- CCKD (3 Mixes 3 samples each)

Prepared soil mixtures based on

CKD's chemical components

Figure 10: CCKD

Table 2: Soil Sample Mixtures

	%	%	
	Admixture	Soil	
lime	3%	97%	
	7%	93%	
	10%	90%	
CKD	5%	95%	
	10%	90%	
	15%	85%	
CCKD	9%	91%	
	18%	82%	
	27%	73%	

Figure 11: Lime

Soil Strength Tests


- Direct Shear Tests (ASTM D3080)
 - Broken Direct Shear machine (only have results for Control and Lime1 mixtures)
 - After Discussion with Client, Direct Shear Tests are parts of exclusions
- Triaxial Shear Tests (UU ASTM D2850-03a) (30 mixtures)

Figure 13: Preparing Soil Samples

Figure 14: Digital Tritest

Results of Analysis

- Proctor Compaction Results
- Triaxial Shear (UU) Results
 - > 3 Control Results (Soils without admixture)
 - > 9 Lime Results (Lime 1, 2 & 3)
 - > 9 CKD Results (CKD 1, 2 & 3)
 - > 9 CCKD Results (CCKD 1, 2 & 3)

Figure 16: Proctor Compaction tools [7]

Proctor Compaction Results

- Soil samples will have maximum density when maximum dry unit weight and optimum moisture content are achieved
- Average Soil's Optimum Moisture Content (3 Proctor Tests): 17.43%
- Mixtures were mixed at Soil's
 Optimum Moisture Content

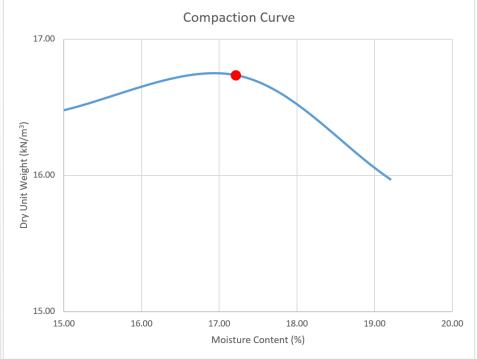


Figure 17: Dry Unit Weight vs. Moisture Content

Triaxial Shear Tests - Results

 Table 3: Triaxial Shear Results (Average Shear Strength and Percent Increase in Strength compared to Control Samples)

Mix	Amount of Calcium Oxide in Mix (%)	Average Shear Strength (psi)	Standard Deviation (psi)	Percent Increase (%)
Control	0	12.29	0.8428	-
CCKD1	3.273	22.98	3.309	87.06
CCKD2	6.546	21.44	2.960	74.47
CCKD3	9.819	28.06	4.121	128.4
CKD1	3.273	17.11	12.12	39.23
CKD2	6.546	17.94	1.895	46.06
CKD3	9.819	21.01	2.584	71.01
Lime1	3.273	9.983	7.249	-18.74
Lime2	6.546	26.81	9.578	118.3
Lime3	9.819	21.49	2.143	74.93

Shear Strength versus Percent Calcium Oxide in Mixtures

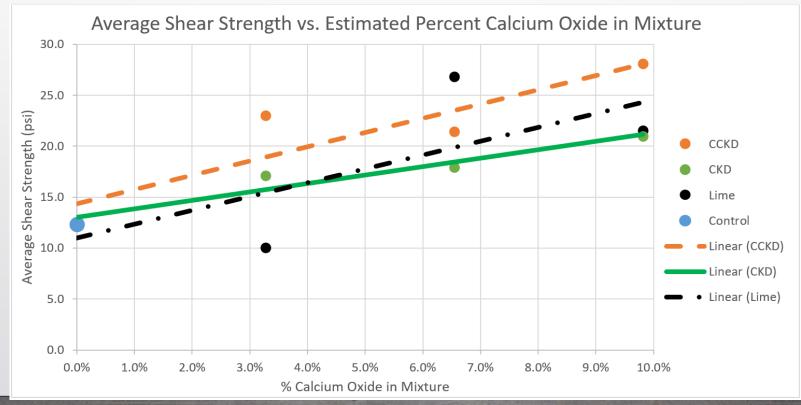


Figure 18: Average Triaxial Shear Test results for All Mixtures versus percent Calcium Oxide in Mixtures

Factors Affecting Results

Results obtained from soil testing **highly vary** due to:

- Shape of sample (samples have to be shaved down for use)
- Contents of Lime, CKD and CCKD added when preparing mixtures
- Percent Calcium Oxide added when making samples
- Moisture loss during curing process

Figure 19: Mold sample

Project Impacts

- The reduction of CO₂ from the making of CCKD will **GREATLY** benefit the global community!!!
- The use of CCKD as a soil stabilizer will increase shear strength of soils, resisting failure and sliding along any plane inside soils (Leaning Tower of Pisa)
- CKD will no longer be treated as waste, reducing the amount of landfill materials
- Producing CCKD from CKD waste will save natural resources, reducing the use of

new materials as soil stabilizers

CCKD manufacturing process will create potential new jobs

Project Hours

Table 4: Project Hours

Task	SENG (hrs)	ENG (hrs)	INT (hrs)	Actual Hours	Predicted Hours
1.0 Literature Review	20	40	-	60	120
2.0 Soil Selection	170	128			
2.1 Determining Soil Used	25	10	-	35	48
2.2 Obtaining Soil Samples	-	10	100	110	40
2.3 Soil Classification	-	12.5	12.5	25	40
3.0 Preparing Soil Samples - 47 47				94	40
4.0 Soil Strength Tests	181.25	166			
4.1 Proctor Compaction	-	1.5	20	21.5	0
4.2 Direct Shear Tests	-	7	35	42	68
4.3 Triaxial Shear Tests	-	17.75	100	117.75	98
5.0 Analysis Results	5.0 Analysis Results 9.25 18.5 -		-	27.75	120
6.0 Project Management	111.75	228			
6.1 Scheduling	28.75	-	-	28.75	8
6.2 Meetings	17	17	17	51	60
6.3 Deliverables	16	16	-	32	160
TOTAL (HRS)	116	197.25	331.5	644.75	802.00

Table 5: Personnel Descriptions

Code	Classification			
SENG	Senior Engineer			
ENG	Engineer			
INT	Engineering Intern			

Scheduling: Gantt Chart (Predicted)

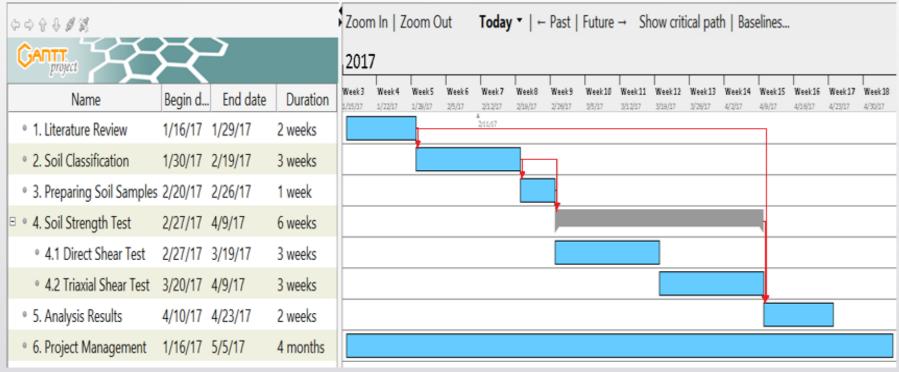


Figure 20: Predicted Gantt Chart

Scheduling: Gantt Chart (Actual)

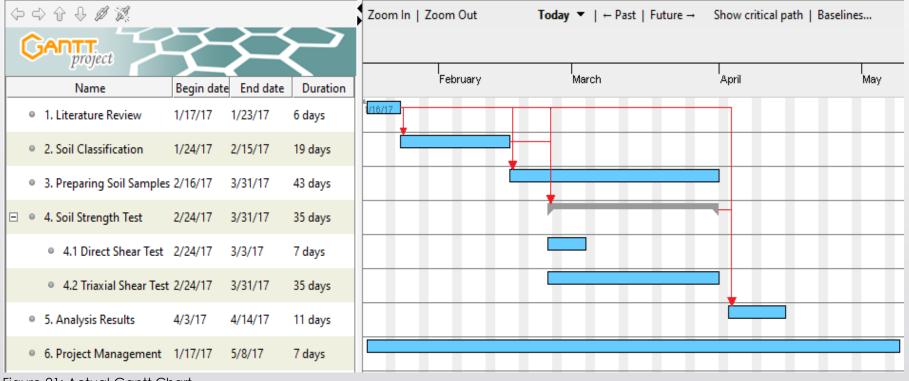


Figure 21: Actual Gantt Chart

Table 6: Total Cost

Total Cost

Engineering Services	Classification	Staffing Hours	Billing Rate	Actual Cost	Projected Cost
Personnel	SENG	116 hrs	\$115/hr	\$13,340	\$22,540
	ENG	197.25 hrs	\$58/hr	\$11,441	\$20,648
	INT	331.5 hrs	\$45/hr	\$14,918	\$11,250
	Total Personnel		\$39,698	\$54,438	
Laboratory Work	Soil Classification	6 hrs	\$100/hr	\$600	\$4,000
	Sieving Soils	30 hrs	\$100/hr	\$3,000	-
	Proctor Compaction	9 hrs	\$100/hr	\$900	-
	Direct Shear	12 hrs	\$100/hr	\$1,200	\$6,000
	Triaxial Shear (UU)	90 hrs	\$100/hr	\$9,000	\$9,000
Total Laboratory Cost				\$14,700	\$19,000
TOTAL COST			\$54,398	\$73,438	

Acknowledgement

- Alarick Reiboldt, Civil and Environmental Engineering Instructor, NAU
- Gerjen Slim, Civil and Environmental Engineering Lab Manager, NAU
- Pranshoo Solanki, Assistant Professor, Civil Engineering and Environmental Science, University of Oklahoma
- Naji Khoury, Assistant Professor, Civil and Environmental Engineering, Temple University
- M. Zaman, Associate Dean for Research, College of Engineering, University of

Oklahoma

References

[1]M. Rubenstein, "Emissions from the Cement Industry", Blogs.ei.columbia.edu, 2016. [Online]. Available: http://blogs.ei.columbia.edu/2012/05/09/emissions-from-the-cement-industry/. [Accessed: 11- Dec- 2016].
[2]D. Little, "EVALUATION OF STRUCTURAL PROPERTIES OF LIME STABILIZED SOILS AND AGGREGATES", 2016. [Online]. Available: http://www.lime.org/documents/publications/free_downloads/soilsaggregates-vol1.pdf. [Accessed: 03- Oct- 2016].

[3]R. Parsons and E. Kneebone, "Use of Cement Kiln Dust for the Stabilization of Soils", Geotechnical Engineering for Transportation Projects, 2004.

[4]P. Solanki, N. Khoury and M. Zaman, "Engineering Properties and Moisture Susceptibility of Silty Clay Stabilized with Lime, Class C Fly Ash, and Cement Kiln Dust", J. Mater. Civ. Eng., vol. 21, no. 12, pp. 749-757, 2009. 1.3.2.1 [5]R. D. Holtz and W. D. Kovacs, An introduction to geotechnical engineering. Englewood Cliffs, NJ, United States: Prentice-Hall, 1981.

[6]S. Rees, "Introduction to Triaxial Testing", GDS Instruments, 2016. [Online]. Available:

http://www.gdsinstruments.com/_assets_/pagepdf/000037/Part%201%20Introduction%20to%

20triaxial%20testing.pdf. [Accessed: 19- Sep- 2016].

[7]"Proctor Compaction Test - Google Search". Google.com. N.p., 2017. Web. 26 Apr. 2017.

Supplemental Information: CCKD vs. Control Results

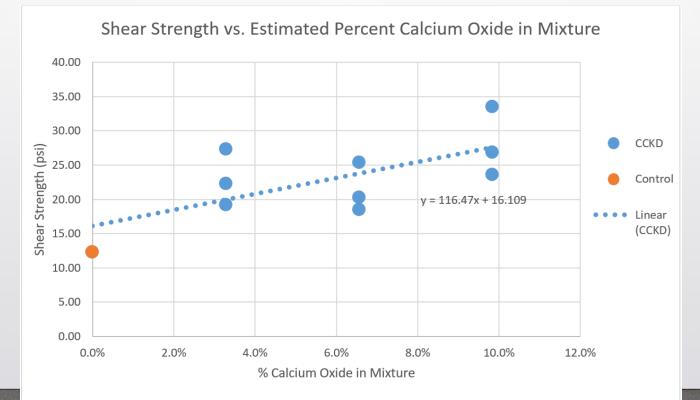


Figure 22: Average Triaxial Shear Test results for CCKD Mixtures versus percent Calcium Oxide in Mixtures

Supplemental Information: CKD vs. Control Results

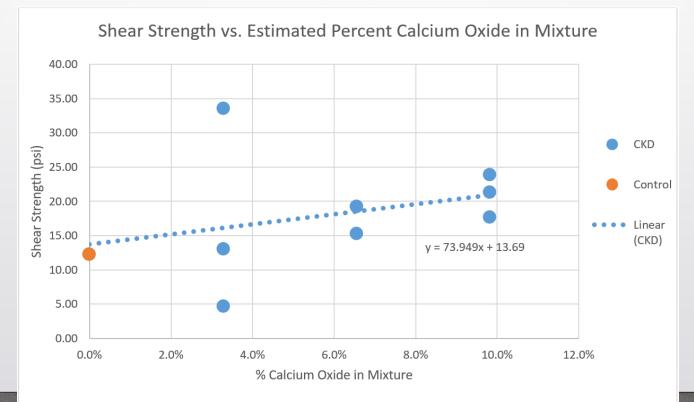


Figure 23: Average Triaxial Shear Test results for CKD Mixtures versus percent Calcium Oxide in Mixtures

Supplemental Information: Lime vs. Control Results

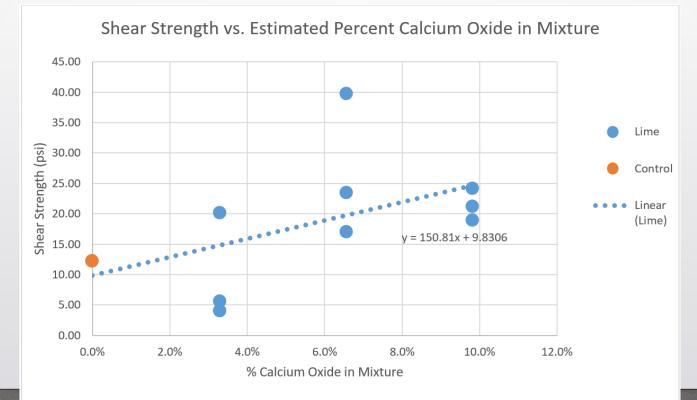


Figure 24: Average Triaxial Shear Test results for Lime Mixtures versus percent Calcium Oxide in Mixtures